Сульфат меди раствор аммиака

Пример 3.

Пример 2.

Пример 1.

При постепенном прибавлении раствора аммиака к раствору сульфата меди образующийся вначале осадок основной меди растворяется. Составьте ионные и молекулярные уравнения соответствующих реакций.

Из нормальной соли CuSO4 можно получить единственную основную соль (CuOH)2SO4 (медь (II) гидроксид сульфат). Следовательно, вначале протекает следующая реакция:

В сокращенной ионной форме уравнение имеет вид

При дальнейшем добавлении аммиака осадок растворяется, так как образуется растворимое комплексное соединение. Уравнение реакции в молекулярной форме:

Ионно-молекулярное уравнение реакции:

К какому классу соединений относятся вещества, получаемые при действии избытка раствора аммиака на растворы AgNO3, Hg(NO3)2, Zn(NO3)2?

Составьте молекулярные и ионные уравнения реакций.

При действии избытка раствора аммиака на растворы приведенных в условии задачи солей протекают следующие реакции:

Уравнения реакций в сокращенной ионной форме:

Какие степени окисления проявляет марганец в соединениях? Составьте формулы оксидов марганца, отвечающих этим степеням окисления. Как меняются кислотно-основные свойства оксидов марганца при переходе от низшей к высшей степени окисления? Составьте уравнения реакций взаимодействия оксида марганца (II) с серной кислотой и оксида марганца (III) с гидроксидом калия.

В соединениях марганец проявляет пять степеней окисления — (+2, +3, +4, +6, +7), но образует всего четыре простых устойчивых оксида: MnO – оксид марганца (II), Mn2O3 – оксид марганца (III), MnO2 – оксид марганца (IV) и Mn2O7 – оксид марганца (VII). Первые два оксида MnO и Mn2O3 обладают основными свойствами.

Оксид марганца (IV) амфотерен со слабо выраженными кислотными и основными свойствами. Высший оксид марганца Mn2O7 является типичным кислотным оксидом. Триоксид марганца, отвечающий степени окисления (+6), не получен.

Напишем уравнения реакций, необходимых по условию задачи:

Составьте электронные и молекулярные уравнения реакций растворения золота в царской водке и взаимодействия вольфрама с хлором. Золото окисляется до степени окисления (+3), а вольфрам — до максимальной.

Царская водка – это смесь одного объема азотной и трех – четырех объемов концентрированной соляной кислоты. При смешивании кислот образуется хлор в момент выделения, который и окисляет золото:

2 | Au 0 – 3= Au +3 ,

3 | Cl2 0 +2=2Cl – .

Молекулярное уравнение реакции:

Максимальная степень окисления вольфрама, как элемента шестой группы, равна (+6). Хлор в данной задаче выступает в роли окислителя и, присоединив электроны, приобретает степень окисления (–1). На основе вышеизложенного составим электронные уравнения:

| W – 6= W +6 ,

3 | Cl2 +2=2Cl –1 .

Уравнение реакции имеет вид

Дата добавления: 2014-10-31 ; Просмотров: 1275 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Цели. Сформировать представления о составе, строении, свойствах и номенклатуре комплексных соединений; развить навыки определения степени окисления у комплексообразователя, составления уравнений диссоциации комплексных соединений.
Новые понятия: комплексное соединение, комплексообразователь, лиганд, координационное число, внешняя и внутренняя сферы комплекса.
Оборудование и реактивы. Штатив с пробирками, концентрированный раствор аммиака, растворы сульфата меди(II), нитрата серебра, гидроксида натрия.

Читайте также:  Самоед самоедская лайка

ХОД УРОКА

Лабораторный опыт. К раствору сульфата меди(II) прилить раствор аммиака. Жидкость окрасится в интенсивный синий цвет.

Что произошло? Химическая реакция? До сих пор мы не знали, что аммиак может реагировать с солью. Какое вещество образовалось? Каковы его формула, строение, название? К какому классу соединений его можно отнести? Может ли аммиак реагировать с другими солями? Есть ли соединения, аналогичные этому? Ответить на эти вопросы нам и предстоит сегодня.

Растворы CuSO4 (а)
и комплексного соединения
[Cu(NH3)4(H2O)2]SO4 (б)

Чтобы лучше изучить свойства некоторых соединений железа, меди, серебра, алюминия, нам потребуются знания о комплексных соединениях.

Продолжим наш опыт. Полученный раствор разделим на две части. К одной части прильем щелочь. Осадка гидроксида меди(II) Cu(OH)2 не наблюдается, следовательно, в растворе нет двухзарядных ионов меди или их слишком мало. Отсюда можно заключить, что ионы меди вступают во взаимодействие с прибавленным аммиаком и образуют какие-то новые ионы, которые не дают нерастворимого соединения с ионами OH – .

В то же время ионы остаются неизменными. В этом можно убедиться, прибавив к аммиачному раствору раствор хлорида бария. Тотчас же выпадет белый осадок BaSO4.

Исследованиями установлено, что темно-синяя окраска аммиачного раствора обусловлена присутствием в нем сложных ионов [Cu(NH3)4] 2+ , образовавшихся путем присоединения к иону меди четырех молекул аммиака. При испарении воды ионы [Cu(NH3)4] 2+ связываются с ионами , и из раствора выделяются темно-синие кристаллы, состав которых выражается формулой [Cu(NH3)4]SO4•H2O.

Комплексными называют соединения, содержащие сложные ионы и молекулы, способные к существованию как в кристаллическом виде, так и в растворах.

Формулы молекул или ионов комплексных соединений обычно заключают в квадратные скобки. Комплексные соединения получают из обычных (некомплексных) соединений.

Примеры получения комплексных соединений

Реагирующие вещества Kомплексные соединения Kомплексные ионы
CuSO4 + 4NH3 [Cu(NH3)4] SO4 [Cu(NH3)4] 2+
Fe(CN)2 + 4KCN K4[Fe(CN)6] [Fe(CN)6] 4–
PtCl2 + 2NH3 [Pt(NH3)2Cl2]

Строение комплексных соединений рассматривают на основе координационной теории, предложенной в 1893 г. швейцарским химиком Альфредом Вернером, лауреатом Нобелевской премии. Его научная деятельность проходила в Цюрихском университете. Ученый синтезировал много новых комплексных соединений, систематизировал ранее известные и вновь полученные комплексные соединения и разработал экспериментальные методы доказательства их строения.

А.Вернер
(1866–1919)

В соответствии с этой теорией в комплексных соединениях различают комплексообразователь, внешнюю и внутреннюю сферы. Комплексообразователем обычно является катион или нейтральный атом. Внутреннюю сферу составляет определенное число ионов или нейтральных молекул, которые прочно связаны с комплексообразователем. Их называют лигандами. Число лигандов определяет координационное число (КЧ) комплексообразователя.

Пример комплексного соединения

Рассмотренное в примере соединение [Cu(H2O)4)]SO4•H2O или CuSO4•5Н2О – это кристаллогидрат сульфата меди(II).

Определим составные части других комплексных соединений, например K4[Fe(CN)6].
(Справка. Вещество с формулой HCN – это синильная кислота. Соли синильной кислоты называют цианидами.)

Комплексообразователь – ион железа Fe 2+ , лиганды – цианид-ионы СN – , координационное число равно шести. Все, что записано в квадратных скобках, – внутренняя сфера. Ионы калия образуют внешнюю сферу комплексного соединения.

Природа связи между центральным ионом (атомом) и лигандами может быть двоякой. С одной стороны, связь обусловлена силами электростатического притяжения. С другой – между центральным атомом и лигандами может образоваться связь по донорно-акцепторному механизму по аналогии с ионом аммония. Во многих комплексных соединениях связь между центральным ионом (атомом) и лигандами обусловлена как силами электростатического притяжения, так и связью, образующейся за счет неподеленных электронных пар комплексообразователя и свободных орбиталей лигандов.

Комплексные соединения, имеющие внешнюю сферу, являются сильными электролитами и в водных растворах диссоциируют практически нацело на комплексный ион и ионы внешней сферы. Например:

[Cu(NH3)4]SO4 [Cu(NH3)4] 2+ + .

При обменных реакциях комплексные ионы переходят из одних соединений в другие, не изменяя своего состава:

[Cu(NH3)4]SO4 + BaCl2 = [Cu(NH3)4]Cl2 + BaSO4.

Внутренняя сфера может иметь положительный, отрицательный или нулевой заряд.

Если заряд лигандов компенсирует заряд комплексообразователя, то такие комплексные соединения называют нейтральными или комплексами-неэлектролитами: они состоят только из комплексообразователя и лигандов внутренней сферы.

Таким нейтральным комплексом является, например, [Pt(NH3)2Cl2].

Наиболее типичными комплексообразователями являются катионы d-элементов.

Лигандами могут быть:

а) полярные молекулы – NH3, Н2О, CO, NO;
б) простые ионы – F – , Cl – , Br – , I – , H – , H + ;
в) сложные ионы – CN – , SCN – , NO2 – , OH – .

Pассмотрим таблицу, в которой приведены координационные числа некоторых комплексообразователей.

Читайте также:  Маленькая лиса фенек
Kоординационное
число
Ионы
2 Cu +, Ag + , Au +
4 Cu 2+ , Hg 2+ , Sn 2+ , Pt 2+ , Pb 2+ , Ni 2+ , Co 2+ , Zn 2+ , Au 3+ , Al 3+
6 Fe 2+ , Fe 3+ , Co 2+ , Co 3+ , Ni 2+ , Cr 3+ , Sn 4+ , Pt 4+

Номенклатура комплексных соединений. В соединении сначала называют анион, а затем катион. При указании состава внутренней сферы прежде всего называют анионы, прибавляя к латинскому названию суффикс —о-, например: Cl – – хлоро, CN – – циано, OH – – гидроксо и т.д. Далее называют нейтральные лиганды и в первую очередь аммиак и его производные. При этом пользуются терминами: для координированного аммиака – аммин, для воды – аква. Число лигандов указывают греческими словами: 1 – моно, 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Затем переходят к названию центрального атома. Если центральный атом входит в состав катионов, то используют русское название соответствующего элемента и в скобках указывают его степень окисления (римскими цифрами). Если центральный атом содержится в анионе, то употребляют латинское название элемента, а в конце прибавляют окончание —ат. В случае неэлектролитов степень окисления центрального атома не приводят, т.к. она однозначно определяется из условия электронейтральности комплекса.

Примеры. Чтобы назвать комплекс [Cu(NH3)4]Сl2, определяют степень окисления (С.О.)
х комплексообразователя – иона Cu х+ :

Аналогично находят степень окисления иона кобальта:

Чему равно координационное число кобальта в этом соединении? Сколько молекул и ионов окружает центральный ион? Координационное число кобальта равно шести.

Название комплексного иона пишут в одно слово. Степень окисления центрального атома обозначают римской цифрой, помещенной в круглые скобки. Например:

Читайте также:  Что ест кит в природе

На примере нескольких комплексных соединений определим структуру молекул (ион-комплексообразователь, его С.О., координационное число, лиганды, внутреннюю и внешнюю сферы), дадим название комплексу, запишем уравнения электролитической диссоциации.

K4[Fe(CN)6] 4K + + [Fe(CN)6] 4– .

H[AuCl4] – тетрахлорозолотая кислота (образуется при растворении золота в «царской водке»),

H[AuCl4] H + + [AuCl4]–.

[Ag(NH3)2]OH – гидроксид диамминсеребра(I) (это вещество участвует в реакции «серебряного зеркала»),

[Ag(NH3)2]OH [Ag(NH3)2] + + OH – .

Na[Al(OH)4] – тетрагидроксоалюминат натрия,

Na[Al(OH)4] Na + + [Al(OH)4] – .

К комплексным соединениям относятся и многие органические вещества, в частности, известные вам продукты взаимодействия аминов с водой и кислотами. Например, соли хлорид метиламмония и хлорид фениламмония являются комплексными соединениями. Согласно координационной теории они имеют следующее строение:

Здесь атом азота – комплексообразователь, атомы водорода при азоте, радикалы метил и фенил – лиганды. Вместе они образуют внутреннюю сферу. Во внешней сфере находятся хлорид-ионы.

Многие органические вещества, имеющие большое значение в жизнедеятельности организмов, представляют собой комплексные соединения. К ним относятся гемоглобин, хлорофилл, ферменты и др.

Комплексные соединения находят широкое применение:

1) в аналитической химии для определения многих ионов;
2) для разделения некоторых металлов и получения металлов высокой степени чистоты;
3) в качестве красителей;
4) для устранения жесткости воды;
5) в качестве катализаторов важных биохимических процессов.

При постепенном прибавлении раствора аммиака к раствору сульфата меди, образующийся вначале осадок основной меди растворяется. Составьте ионные и молекулярные уравнения соответствующих реакций.

Из нормальной соли CuSO4 можно получить единственную основную соль (CuOH)2SO4 (медь(II) гидроксид сульфат). Следовательно, вначале протекает следующая реакция:

В сокращенной ионной форме уравнение имеет вид

2Cu 2+ + SO + 2NH4OH = (CuOH)2SO4¯ + 2NH .

При дальнейшем добавлении аммиака осадок растворяется, так как образуется растворимое комплексное соединение. Уравнение реакции в молекулярной форме:

Ионно-молекулярное уравнение реакции:

Cu(OH)2SO4¯ + 10NH4OH = 2[Cu(NH3)4] 2+ + 2OH – + 2NH + SO + 10H2O.

Дата добавления: 2015-10-01 ; просмотров: 1565 | Нарушение авторских прав

Share

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector